Microtexture Analysis of Friction Stir Welded Al 6061-T651 Plates

Author:

Kang Suk Hoon1,Bang Woong Ho1,Cho Jae Hyung2,Han Heung Nam1,Oh Kyu Hwan3,Lee Chang Gil4,Kim Sung Joon4

Affiliation:

1. Seoul National University

2. Korea Institute of Materials Science

3. Korea University

4. Korea Institute of Machinery and Materials

Abstract

Microstructural characteristics of friction-stir-welded Al 6061-T651 with varying rotating and advancing speed were examined by the electron backscattering diffraction (EBSD) installed in field emission-scanning electron microscopy (FE-SEM). It was found that FSW produced an equiaxed fine-grained microstructure in weld zone and the grain size in weld zone decreased up to about 4~6 µm with decreasing rotating speed. The primary textures developed in weld zone were {100}<001>, {110}<001> and {111}<110>. In thermo-mechanical affected zone, the change in grain size was not significant, however, large number of low angle grain boundaries were observed, which seems to be concerned with the formation of subgrains due to the development of dislocation cells.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference10 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3