Microstructure and Thermal Diffusivity of Gd2Zr2O7 Powders

Author:

Moskal Grzegorz1,Rozmysłowska Aleksandra1

Affiliation:

1. Silesian University of Technology

Abstract

The selection of new TBC materials is restricted by few basic requirements such as: high melting point, no phase transformation between room and the operation temperatures, low thermal conductivity, chemical inertness to the combustion gases and environment, thermal expansion match with the metallic substrate, good adherence to the metallic substrate and low sintering rate of the porous microstructure. Among these properties, one of the most important is thermal diffusivity. The number of material that can be used as TBCs is limited and so far only a few materials have been found to basically satisfy these requirements. Recent research has shown that certain rare-earth zirconates, such as Gd2Zr2O7, have even lower thermal conductivities than 7YSZ, and this has spurred an intensive research in discovering alternative TBC materials. The results of microstructure tests performed on the powders intended for thermally sprayed TBCs with APS method were presented in this article. The tests of phase and chemical composition of the analysed powder were performed. The carbon, sulphur and gas nitrogen contents were, among other things, determined during those tests. The x-ray powder diffraction phase identification in as received material was determined. The tested material showed the presence of Gd2Zr2O7 compound as the predominant one and Gd2O3 and ZrO2 oxides. The surface morphology analysis of the powder was carried out and its internal structure was characterized. The tested material shows porous structure typical for agglomerated powders. The second testing area applied to analysis of the powder thermal properties. The thermal diffusivity of the compressed samples with density similar to the solid material was determined with the laser flash (LF) method. The measurement results show that requirements for the materials used for new generation TBCs are met.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3