Review on the Fatigue of Composite Hybrid Joints Used in Aircraft Structures

Author:

Chowdhury Nabil1,Chiu Wing Kong1,Wang John2

Affiliation:

1. Monash University

2. Defence, Science and Technology Organisation

Abstract

The use of composite materials as a replacement for commonly used metals such as aluminium and steel are increasing in the engineering industry, particularly in the aerospace sector. The move towards light weight and high stiffness structures that have good fatigue durability and corrosion resistance has led to the rapid move from metal to composites. This change allows for further flexibility in design and fabrication of various components and joints. There are three main categories of joints used in composite materials – mechanically fastened joints, adhesively bonded joints and the combination of the two called hybrid joints. In order to adequately understand the effectiveness of these joints, substantial testing and validation is required, particularly in the use of hybrid joints for real life applications. Static testing, load distribution and parametric studies of hybrid joints have been investigated by various researchers; however further work is still required in understanding the durability and fatigue of hybrid joints and ensuring that both the adhesive and mechanical fasteners can work together effectively in producing an optimum joint. Mechanical fastening alone in composite laminates is not a preferred joining method as they create high stress concentrations around the fastener holes. Adhesive bonding although has numerous benefits it is difficult to detect the bond defect particularly in cases where weak bonds can occur during applications and it is sensitive towards the environmental conditions. Thus hybrid joints are seen arguably as being more effective in joining composite components together and offer greater residual strength. Hence the performance, strength and long-term durability of these joints need to be further investigated and be applied to practical situations whilst assisting in repair certification.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3