Formation Mechanism of Specific Fracture Surface Region in the Sub-Surface Fracture of Titanium Alloy

Author:

Oguma Hiroyuki1,Nakamura Takashi1

Affiliation:

1. Hokkaido University

Abstract

In Ti–6Al–4V alloy, fatigue properties have been widely investigated, and the origin of fatigue fracture is usually at the surface in the high stress and lower fatigue life region, whereas in low stress and longer fatigue lifetimes origins are generally sub-surface in nature. Very high cycle fatigue tests were conducted, and observation of fracture surfaces revealed that a unique fine concave and convex agglutinate (hereinafter called Granular Region) formed on the fracture surface of sub-surface fractures. The granular region was not observed on the fracture surface of surface fractures. To clarify the formation mechanism and process of forming the granular region, which is a unique phenomenon in the very high cycle fatigue, fatigue tests using specimens with an artificial surface defect were conducted in air and vacuum. The fatigue tests were based on the idea that the environment around a sub-surface fatigue crack is a vacuum-like environment. During the tests, fracture surfaces were intentionally contacted in air and vacuum under different loading conditions. Fracture surface observations revealed that repeated contact of the fracture surfaces and a vacuum environment are necessary for the formation of the granular region. A mechanism for the formation of the granular region will be proposed.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3