An Investigation into Cracking in Nickel-Base Superalloy Repair Welds

Author:

Rush Mathew T.1,Colegrove Paul A.1,Zhang Z.2,Courtot B.1

Affiliation:

1. Cranfield University

2. Doncasters Group Limited

Abstract

The nickel-base superalloy Rene 80 is considered very susceptible to liquation and strain-age cracking. Material in the solutionised condition is welded using the Cold Metal Transfer, or CMT process (with ductile filler alloy) and autogenously using a laser. Grain size is shown to have a significant effect on cracking. Using the CMT, welding power is shown to have high significance on the level of cracking, whereas welding speed has little effect. When welding using the laser, it is shown that the power and spot size are more crucial to the material cracking than the travel speed. It is indicated that the weld bead geometry has high significance over the occurrence of cracking, with a relationship between welding power, weld bead geometry, and stresses controlling the occurrence and magnitude of cracking. Further, some laser welds are analysed after post-weld heat treatment, and there is a significant increase in cracking after this. However, 34% of samples contained no cracking in both the as-welded and post-weld heat treated state.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3