Preparation of Nano Crystalline Titanium Dioxide by Microwave Hydrothermal Method

Author:

Moghimifar Vahid1,Raisi Ahmadreza1,Aroujalian Abdolreza1,Bandpey Niloofar Bayani1

Affiliation:

1. Amirkabir University of Technology

Abstract

Titanium dioxide (TiO2) nanoparticles due to their exclusive physical, chemical and electrical properties are widely used as a heterogeneous catalyst and catalytic support in the chemical reactions, a semiconductor for photocatalysis reactions and additives in the membrane processes. The TiO2 nanoparticles are also utilized in solar cells, gas sensors, pigments and etc. Efficiency of these nanoparticles in various applications is dramatically dependent on their size. Various techniques such as combustion flame synthesis and conventional hydrothermal methods have been used to prepare TiO2 nanoparticles, but few synthesis techniques can reproducibly produce particles below 10 nm. In this study, the TiO2 nanoparticles in rutile phase were synthesized by microwave assisted hydrothermal method by controlling the crystallization time and temperature. Titanium tetrachloride (TiCl4) was used as a titanium precursor. The synthesized nanoparticles were characterized by X-ray powder diffraction (XRD) and Scanning Electron Microscope (SEM) analysis. The XRD pattern showed that the rutile phase of the TiO2 nanoparticles was successfully synthesized by the proposed method with the average crystal size of 4nm. Finally, the prepared Titanium dioxide (TiO2) nanoparticles were as a hydrophobic additive in the polymeric ultrafiltration membranes in order to reduce the membrane fouling.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference11 articles.

1. U. Diebold, The surface science of titanium dioxide, Surf. Sci. Reports 48 (2003) 53-229.

2. S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles, Chin. Sci. Bull. 56 (2011) 1639-1657.

3. F. Lin, Preparation and characterization of polymer TiO2 nanocomposites via in-situ polymerization, in, University of Waterloo, Ontario, Canada, (2006).

4. H. Zhang, J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem. 8 (1998) 2073-(2076).

5. H. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, J. Phys. Chem. B 104 (2000) 3481-3487.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3