Abstract
Hyperspectral images have been widely used in earth observation. However, there are some problems such as huge amount of data and high correlation between bands. An application of particle swarm optimization algorithm based on B distance was proposed to band selection of hyperspectral images. First of all, bands are grouping by the correlation coefficient of the band and adjacent bands. B distance was used as separability criterion between classes and the fitness function comes into being. Finally, the classification results illustrate that the total classification accuracy of the proposed method is higher than the traditional method.
Publisher
Trans Tech Publications, Ltd.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献