Constitutive Modeling for Cyclic Behavior of AZ31B Magnesium Alloy and its Application

Author:

Behravesh Seyed Behzad1,Jahed Hamid1,Lambert Steve B.1,Chengji Mi2

Affiliation:

1. University of Waterloo

2. Hunan University

Abstract

Fatigue testing was conducted on AZ31B-H24 magnesium alloy in strain-control condition. An unusual asymmetric shape of the hysteresis loop was the key feature of the cyclic behavior. A continuum-based cyclic plasticity model was developed to follow the asymmetric hardening behavior of wrought magnesium alloys. The proposed model was implemented in a UMAT subroutine to run with Abaqus/Standard. It was demonstrated that the UMAT was able to follow the cyclic hardening behavior of AZ31B under uniaxial loading. An energy-based damage parameter was proposed for estimating the fatigue crack initiation life. The developed UMAT along with the proposed damage parameter were used for fatigue modeling of an automotive substructure made of magnesium. It was shown that the proposed asymmetric model was more promising than a symmetric model.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3