A Stochastic Disturbance of Particle Swarm Optimization for K-Means Clustering Method

Author:

Chen Jun Yan1

Affiliation:

1. Tianjin Institute of Urban Construction

Abstract

This paper presents a hybrid-clustering algorithm that is a stochastic disturbance of particle swarm optimization (PSO) for K-means clustering method (SDPSO-K). The proposed algorithm can improve the particle global searching ability in PSO to avoid the K-means disadvantage of being easily trapped in a local optimal solution and to save the expensive computational cost of PSO clustering. The performance of the SDPSO-K, compared with three recently developed modified PSO techniques and related clustering algorithms for six datasets, indicates that the SDPSO-K algorithm is clearly and consistently superior in terms of precision and robustness.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference15 articles.

1. Y. Zhao and G. Karypis: Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, vol 55(, 2004), pp.311-331.

2. M. R. AnderbergIn, Cluster Analysis for Applications. Academic Press, New York, US. (1973).

3. Y. Kao, E. Zahara and I. Kao: A hybridized approach to data clustering, Expert Systems with Applications, vol. 34(2008), pp.1754-1762.

4. S, Paterlini and T. Krink: Differential evolution and particle swarm optimization in partitional clustering. Computational Statistics and Data Analysis, vol. 50(2006), pp.1220-1247.

5. M. Omran, A. Salman and A. P. Engelbrecht: Image Classification using Particle Swarm Optimization. Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, Singapore. vol. 1(2002), pp.370-374.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3