Improving Relevance Feedback via Using Support Vector Machines

Author:

Chen Zi Long1,Lu Yang2

Affiliation:

1. Beihang University

2. Peking University

Abstract

Traditional relevance feedback technique could help improve retrieval performance. It usually utilize the most frequent terms in the relevant documents to enrich the user’s initial query. We re-examine this method and find that many expansion terms identified in traditional approaches are indeed unrelated to the query and harmful to the retrieval. This paper introduces a Support Vector Machines Based method to improve the retrieval results. Firstly, the classifier is trained on the feedback documents. Then, we can utilize this classifier to classify the rest of the documents and move relevant documents to the front of irrelevant documents. This new approach avoids modifying the initial query, so it’s a new direction for the relevance feedback techniques. Our Experiments on TREC dataset demonstrate that retrieval effectiveness can be improved more than 24.37% when our proposed approach is used.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3