Finite Element Method for Predicting the Cohesive Strength of DLC Film on 316L Stainless Steel by Four Point Bend Test and Validation with Experimental Results

Author:

Morshed Muhammad M.1,Daniels Stephen M.1,Hashmi M.S.J.1

Affiliation:

1. Dublin City University

Abstract

The mechanical performance of DLC coatings on 316L stainless steel deposited by a saddle field fast atom beam source has been evaluated using the four point bend (FPB) test. Two different deposition parameters, pressure and current were varied when depositing the films. Load-displacement measurements were carried out during the bend test to determine the load corresponding to crack initiation. This load designated as the cohesive strength of the coating which is also called the cracking resistance of coating and provides a measure of the strength of the coating. The cohesive strength of the coating was calculated based on elementary beam theory. Scanning Electron Microscopy (SEM) was used to determine the location of the crack. Finite element analysis was used to predict the stress distribution across the coating thickness. The experimental work on FPB tests has been used to support the numerical (finite element) model for the determination and prediction of film cohesive strength. It was observed that at lower deposition current, the cohesive strength increases with increased deposition pressure whereas, for higher deposition current, these values do not increase with increasing deposition pressure. The model takes into account the film’s Young’s modulus, thickness and deposition pressure and current, and has shown that it is capable of predicting film cohesive strength when combined with a theoretical formulation for brittle fracture. It has been observed that the maximum stress develops at the outer surface of the film and propagates through the film-substrate interface. This result has only been validated for films with higher Young’s modulus compared to that of the substrate material.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3