Optimal Design for Prestressed Structures Based on Continuous and Discrete Variables

Author:

Yang Yong Hua1,Wu Jie2

Affiliation:

1. Shanghai Normal University

2. Tongji University

Abstract

The mathematical model of optimal design for prestressed structures is established and a two-level algorithm based on hybrid variables is proposed. At the first level, the prestressed forces are chosen to be the design variables and the optimal design for prestressed forces based on continuous variable is carried out. At the second level, the cross-sectional areas are chosen to be the design variables and the discrete sizing optimization is carried out under fixed prestressed forces, the local constrains are satisfied with one-dimensional search algorithm, the integral constrains are satisfied with the relative difference quotient algorithm, and the efficiency of the relative difference quotient algorithm is greatly improved by introducing the assumption of statically determinant structures. The numerical example shows the correctness and effectiveness of the method.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3