Optimization Design of CTP Imaging Drum Based on ANSYS

Author:

Xing Jie Fang1,Ni Xiao Yu1,Zhang Jie1,Chen Du Juan1

Affiliation:

1. Nanjing Forestry University

Abstract

In the imaging process, the deformation of the plate caused by the structure of the drum, finally affecting the quality of the plate, we analyze and optimize the structure of the drum using the finite element method. Selecting the larger three factors affecting the plate deformation as the design variables, and taking minimizing the maximum deformation of the plate as the objective function, we establish the optimization model of the structure of the drum. We use the APDL parametrization language to create the geometric model and finite element model of the drum, and select the contact element to simulate the relationship between the plate and the surface of the drum, and use ANSYS software to optimize the optimization model. It is shown form the result that: the minimum of the maximum deformation of the drum getting from the 8th iteration is 0.0021535mm, significantly reduced compared with the initial value 0.002864mm. At this point, the internal diameter D2 of the drum is 300.04mm, the groove width L2 is 14.323mm, the external diameter of groove height D3 is 338.44mm. It indicates that that the smaller the internal diameter of the drum and the narrower the guide groove on the drum surface are, the smaller the maximum deformation of the plate is, and the guide groove height has little influence on the deformation. The results can be provided as theoretical reference for the design of CTP imaging drum, which has popularization and application value.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference10 articles.

1. Fan Zhaodong, Sun Zhonghua. CTP Laser Sources and Technical Analysis [J]. Image Technique, (2009).

2. Yue Demao, et al. Applied Technical Guide on Light Sensitive Material and Plate [M]. Beijing: Printing Industry Press, (2007).

3. Zhang Kaile, Huang Yingwei, Xue Fengmen, et al. Study on Force Analysis of PZ1650 Rubber Drum [J]. Packaging Engineering, (2009).

4. Guo Runlan, Wu Aimei, Kang Xingmin. Finite Element Model Analysis on Drum of Printing Machine [J]. China Packaging, (2009).

5. Yang Xinyan. Finite Element Analysis on Impression Cylinder of Offset Press[C]. Master paper of Xi'an University of Technology, (2006).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Contact Simulation of CTP Imaging Drum and Plate on ANSYS;Applied Mechanics and Materials;2012-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3