XML Document Clustering Based on Spectral Analysis Method

Author:

Li Xin Ye1

Affiliation:

1. North China Electric Power University

Abstract

While K-Means algorithm usually gets local optimal solution, spectral clustering method can obtain satisfying clustering results through embedding the data points into a new space in which clusters are tighter. Since traditional spectral clustering method uses Gauss Kernel Function to compute the similarity between two points, the selection of scale parameter σ is related with domain knowledge usually. This paper uses spectral method to cluster XML documents. To consider both element and structure of XML documents, this paper proposes to use path feature to represent XML document; to avoild the selection of scale parameter σ, it also proposes to use Jaccard coefficient to compute the similarity between two XML documents. Experiment shows that using Jaccard coefficient to compute the similarity is effective, the clustering result is correct.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3