Parameter Identification for Underground Powerhouse of Pumped-Storage Power Station Based on ARMA Time-Series Model

Author:

Han Fang1,Zhong Dong Wang1,Mo Ji Yun1,Chen Hao1

Affiliation:

1. Wuhan University of Science and Technology

Abstract

Identification of structural parameters by using observation data with noise in time domain was studied. Autoregressive-moving-average (ARMA) time-series model of a vibrating structure was established, and the identification problem of structural parameters was transformed into the identification problem of parameters of ARMA mode1. Based on the assumption of the unknown but bounded noise, an interval algorithm for set-membership identification of parameters of linear time-invariant system was used to seek the minimal hyper-rectangle of parameters, which is compatible with the measurements and the bounded noise, so that the structural parameters can be obtained. Then the Taian pumped-storage power station engineering project illustrates its feasibility and effectiveness.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Vibration Signal Processing of Large-scale Structural Systems Based on Wireless Sensor;International Journal of Online Engineering (iJOE);2017-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3