Affiliation:
1. Henan Polytechnic University
Abstract
The transformer is one of the indispensable equipment in transformer substation, it is of great significance for fault diagnosis. In order to accurately judge the transformer fault types, an algorithm is proposed based on artificial immune network combined with fuzzy c-means clustering to study on transformer fault samples. Focus on the introduction of data processing of transformer faults based on artificial immune network, the identification of transformer faults based on fuzzy c-means clustering, and the simulation process. The experimental results show that the proposed algorithm can classify power transformer fault types effectively, and the algorithm has a good application prospect in the transformer fault diagnosis.
Publisher
Trans Tech Publications, Ltd.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献