Fault Diagnosis of Coal Electrical Shearer Based on Quantum Neural

Author:

Ma Xian Min1,Xu Mei Hui2

Affiliation:

1. Xi'an University of Science and Technology

2. Xi’an University of Science and Technology

Abstract

An improved quantum neural network model and its learning algorithm are proposed for fault diagnosis of the coal electrical haulage shearer in order to on line monitor working states of the large mining rotating machines. Based on traditional BP neural network, the three-layer quantum neural network is constructed to combine quantum calculation and neural network for the error correction learning algorithm. According to the information processing mode of the biology neuron and the quantum computing theory, the improved quantum neural network model has the ability of identifying uncertainty in fault data classifications and approximating the nonlinear function for different fault types to monitor the electrical motor voltage, current, temperature, shearer location, boom inclination, haulage speed and direction in the coal electrical cutting machines. The theory analysis and simulation experiment results show that the control performances and the safety reliability of the coal shearer are obviously improved, while the quantum neural network model is applied to the nonlinear feature fault diagnosis of the coal electrical haulage shearer.

Publisher

Trans Tech Publications, Ltd.

Reference5 articles.

1. Bo Zhang, Lin Zhu. Design on Real- time Monitoring and Fault Diagnosis System of Electric Haulage Coal Shearer [J]. Coal Science and Technology, 2010, 38(14): 90-93.

2. Xiaoli Xu, Yunbo Zuo, Guoxin Wu. Fault Trend Prediction of Rotating Machines Based on Quantum Neural Network[J]. Journal of Mechanical Strength, 2010, 32(4): 526-530.

3. Guangjun Xie, Haiqiu Fan, Licheng Cao. A Quantum Neural Computational Network Model [J]. Journal of Fudan University (Natural Science), 2004, 43(5): 700-703.

4. Panchi Li. A Quantum Neural Network Learning Algorithm and Application[J], Control Theory & Applications, 2009, 26(5): 531-534.

5. A. Yu. Bulgakov,V. N. V'yukhin, Yu. A. Popov. A 24-Bit Data Acquisition System [J]. Instruments and Experimental Techniques, 2001, 44(2).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3