Abstract
Temporal linear stability of a compressible axisymmetric swirling jet is investigated. The present work extends a previous analysis to include the effects of swirl number on the stability of flow dynamics. Results obtained show that the optimal growth rate of disturbance for azimuthal wavenumber n = -1 is larger than that for n = -2 while the corresponding frequencies for both n increases as axial wavenumber increases. As swirl number q increases, the optimal growth rate of disturbance also increases. What is more, there is an optimal swirl number for small axial wavenumbers, which is different from the situation for medium and large axial wavenumbers.
Publisher
Trans Tech Publications, Ltd.