Voltage Stability Margin Assessment Using Multilayer Feed Forward Neural Network

Author:

Naganathan G.S.1,Babulal C.K.2

Affiliation:

1. Syed Ammal Engineering College

2. Thiagarajar College of Engineering

Abstract

With the deregulation of electricity markets, the system operation strategies have changed in recent years. The systems are operated with smaller margins. How to maintain the voltage stability of the power systems have become an important issue.This paper presents an Artificial Feed Forward Neural Network (FFNN) approach for the assessment of power system voltage stability. This paper uses some input feature sets using real power, reactive power, voltage magnitude and phase angle to train the neural network (NN). The target output for each input pattern is obtained by computing the distance to voltage collapse from the current system operating point using a continuation power flow type algorithm. This paper compared different input feature sets and showed that reactive power and the phase angle are the best predictors of voltage stability margin. Further, the paper shows that the proposed ANN based method can successfully estimate the voltage stability margin not only under normal operation but also under N-1 contingency situations. The proposed method has been applied to the IEEE 14 and IEEE 30 bus test system. The continuation power flow technique run with PSAT and the proposed method is implemented in MATLAB.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3