Reliability-Based Topology Optimization of Compliant Mechanisms with Geometrically Nonlinearity

Author:

Li Zhao Kun1,Bian Hua Mei1,Shi Li Juan1,Niu Xiao Tie1

Affiliation:

1. Beijing Polytechnic College

Abstract

A new reliability-based topology optimization method for compliant mechanisms with geometrical nonlinearity is presented. The aim of this paper is to integrate reliability and geometrical nonlinear analysis into the topology optimization problems. Firstly, geometrical nonlinear response analysis method of the compliant mechanisms is developed based on the Total-Lagrange finite element formulation, the incremental scheme and the Newton-Raphson iteration method. Secondly, a multi-objective topology optimal model of compliant mechanisms considering the uncertainties of the applied loads and the geometry descriptions is established. The objective function is defined by minimum the compliance and maximum the geometric advantage to meet both the stiffness and the flexibility requirements, and the reliabilities of the compliant mechanisms are evaluated by using the first order reliability method. Thirdly, the computation of the sensitivities is developed with the adjoint method and the optimization problem is solved by using the Method of Moving Asymptotes. Finally, through numerical calculations, reliability-based topology designs with geometric nonlinearity of a typical compliant micro-gripper and a multi-input and multi-output compliant sage are obtained. The importance of considering uncertainties and geometric nonlinearity is then demonstrated by comparing the results obtained by the proposed method with deterministic optimal designs, which shows that the reliability-based topology optimization yields mechanisms that are more reliable than those produced by deterministic topology optimization.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3