Comparison of NARX Neural Network and Classical Modelling Approaches

Author:

Sani Muhammad Gaya1,Abdul Wahab Norhaliza1,Sam Yahya M.1,Samsudin Sharatul Izah2,Jamaludin Irma Wani3

Affiliation:

1. Universiti Teknologi Malaysia

2. Universiti Teknikal Malaysia

3. Universiti Teknikal Malaysia Melaka

Abstract

Classical optimization tools are effective when precise mechanistic models exist to support their design and implementation. However, most of the real-world processes are complex due to either nonlinearities or uncertainties (or both) and environmental variations, thus making realizing accurate mathematical models for such processes quite difficult or often impossible. Black box approach tends to present a better alternative in such situations. This paper presents a comparison of nonlinear autoregressive with eXogenous (NARX) neural network and traditional modelling techniques [autoregressive with exogenous input (ARX) and autoregressive moving average with exogenous input (ARMAX)]. The models were validated using experimental data from full-scale plants. Simulation results revealed that the performance of the NARX neural network is better compared to the ARMAX and ARX. The NARX neural network may serve as a valuable forecasting tool for the plants.

Publisher

Trans Tech Publications, Ltd.

Reference12 articles.

1. O. Nelles, Nonlinear system identification: from classical approaches to neural networks and fuzzy models, Springer, Germany, (2000).

2. M.S. Gaya, N.A. Wahab, Y.M. Sam, S. I Samsuddin, Feed-Forward Neural Network Approximation Applied to Activated Sludge System, Commun. Comput. Inf. Sci., 402(2013) 587–598.

3. C. Lewis, Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting, Butterworth-Scientific, California, (1982).

4. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5(1943) 115–133.

5. A. Jain, J. Mao, and K. Mohiuddin, Artificial neural networks: A tutorial, IEEE-Computer Mag., 29 (1996) 31–44.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3