Experimental Investigation on Thermal Conduction of Carbon Nanotubes Reinforced Copper Matrix Composites

Author:

Ahmad Faiz1,Aslam Muhammad1,Raza M. Rafi2,Muhsan Ali S.1,Shirazi M.irfan1

Affiliation:

1. Universiti Teknologi PETRONAS

2. Universiti Kebangsaan Malaysia.

Abstract

The performance of the micro-chip is affected by overheating and hence reduces the efficiency of electronic devices. The development of high thermal conductivity material can solve problems associated with dissipation of heat from the micro-chips. Thermal conductivity for carbon nanotubes (CNTs) are in the ranges of 1200-3000 W/moK which considered as the best candidate material for heat sink applications. This research investigates the fabrication of CNTs reinforced copper composites using powder metallurgy method. Copper powder and CNTs were ball milled to prepare mixtures and compacted at 600 MPa to fabricate test samples. The compacted test samples were sintered in argon atmosphere at 850oC. Sintered density of CNTs/Cu composites was measured and compared with theoretical density. Density data showed that 98% sintered density was achieved. Optical and scanning electron microscopic (SEM) examination of sintered compacts showed good grain growth, however porosity was also noted in sintered samples. Field emission scanning electron microscopy (FESEM) showed well dispersion of CNTs in copper matrix and interfacial bonding between copper particle and CNTs. In this experiment, the addition of 2 % vol. CNTs in copper matrix showed 9% increase in thermal conductivity approximately compared to thesintered pure copper.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3