Proposed Control Method of Doubly Fed Induction Generator Rotor Side Converter Based on System Frequency Regulation

Author:

Zakieldeen Elhassan1,Tang Yi1,Li Yang1

Affiliation:

1. Southeast University

Abstract

With the more penetration of wind power based on the DFIG wind turbine to the grid, there is increasing significance for controlling output power in order to meet power system requirements and to participate the frequency regulation in the power grid. This paper is presented proposed control method of DFIG implemented in the RSC using system frequency coordinated control. In this study, the GSC is controlled by using modified vector control method while the RSC is controlled by adjusting the rotor dq-axis currents. The quadrature axis current controls by using the active power generating from the frequency deviation and DFIG store kinetic energy, whereas the direct axis current is controlled by using grid reactive power. Moreover, this power is also used as a main parameter besides rotor speed to control the pitch angle blade in the turbine side. To confirm this method study, the system operation is conducted at steady state and transient modes, and the simulation results were carried out using PSCAD software program. The simulation results show that the voltage of DFIG is very stable, and the system frequency response has been improved. Furthermore, this study realized a full rated value of rotor speed and stable operation of DFIG active power at a steady state besides a good transient response. Moreover, the pitch angle control provided adequate control action at dynamic mode to decrease turbine torque hence to lead to safety transient mode operation.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3