A Composite Kernel for Word Sense Disambiguation

Author:

Wang Ting Hua1,Zhu Wen Sheng1,Zhang Qiong1,Xie Hai Hui1

Affiliation:

1. Gannan Normal University

Abstract

The success of supervised learning approaches to word sensed disambiguation (WSD) is largely dependent on the representation of the context in which an ambiguous word occurs. In practice, different kernel functions can be designed according to different representations since kernels can be well defined on general types of data, such as vectors, sequences, trees, as well as graphs. In this paper, we present a composite kernel, which is a linear combination of two types of kernels, i.e., bag of words (BOW) kernel and sequence kernel, for WSD. The benefit of kernel combination is that it allows to integrate heterogeneous sources of information in a simple and effective way. Empirical evaluation shows that the composite kernel can consistently improve the performance of WSD.

Publisher

Trans Tech Publications, Ltd.

Reference7 articles.

1. N. Ide and J. Véronis. Introduction to the special issue on word sense disambiguation: the state of the art. Computational Linguistics 24(1) (1998): 1-40.

2. J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004).

3. Y.K. Lee and H.T. Ng. An empirical evaluation of knowledge sources and learning algorithms for word sense disambiguation. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (2002): 41-48.

4. M. Popescu. Regularized least-squares classification for word sense disambiguation. In: Proceedings of the 3rd International Workshop on the Evaluation of Systems for the Semantic Analysis of Text (Senseval-3) (2004): 209-212.

5. C. Giuliano, A. Gliozzo and C. Strapparava. Kernel methods for minimally supervised WSD. Computational Linguistics 35(4) (2009): 513-528.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3