An Intelligent Detection Method for Network Security

Author:

Qiu Ling1,Liu Cai Ming2

Affiliation:

1. Sichuan University of Science and Engineering

2. Leshan Normal University

Abstract

To dynamically discover network attacks hidden in network data, an intelligent detection method for network security is proposed. Biological immune principles and mechanisms are adopted to judge whether network data contain illegal network packets. Signature library of network attacks and section library of attack signatures are constructed. They store attack signatures and signature sections, respectively. They are used to make the initial detection ability of proposed method. Detectors are defined to simulate immune cells. They evolve dynamically to adapt the network security. Signatures of network data are extracted from IP packets. Detectors match network data's signatures which mean some attacks. Warning information is formed and sent to network administrators according to recognized attacks.

Publisher

Trans Tech Publications, Ltd.

Reference6 articles.

1. D. Ourston, S. Matzner, W. Stump, B. Hopkins: Applications of hidden Markov models to detecting multi-stage network attacks, Proc. of the 36th Annual Hawaii International Conference on System Sciences, pp.1-10 (2003).

2. M. Shivakumar1, R. Subalakshmi, S. Shanthakumari, S.J. Joseph: Architecture for Network-Intrusion Detection and Response in open Networks using Analyzer Mobile Agents, International Journal of Scientific Research in Network Security and Communication, Vol. 1, pp.1-7 (2013).

3. H.W. Mo, X.Q. Zuo: Artificial Immune System, Beijing: Science Press (2009).

4. T. Li: Computer immunology, Beijing: Publishing House of Electronics Industry (2004).

5. M. Bateni, A. Baraani, A.A. Ghorbani: Using Artificial Immune System and Fuzzy Logic for Alert Correlation, International Journal of Network Security, Vol. 15, pp.160-174 (2013).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3