Computational Simulation of Mechanical Microenvironment of Early Stage of Bone Healing under Locking Compression Plate with Dynamic Locking Screws

Author:

Miramini Saeed1,Zhang Li Hai1,Richardson Martin2,Mendis Priyan1

Affiliation:

1. University of Melbourne

2. Epworth Richmond Hospital

Abstract

It is well known that bone healing outcomes highly depend on the mechanical microenvironment of the fracture site, and a certain degree of interfragmentary movement (IFM) is essential for indirect (i.e. natural) bone healing. The application of locking compression plate (LCP) internal fixation in the treatment of bone fracture is a common practice which leads to early mobility and full function of the fractured extremity. However should the fixation configuration be too stiff, it might result in delayed healing or asymmetric tissue development across the fracture site due to the fact that IFM in near cortex area is too small to promote healing. Dynamic locking screw (DLS) has been recently designed to tackle this problem by reducing the stiffness of LCP fixation. However, the actual mechano-regulation mechanisms in which DLS uses to regulate the healing process are still not fully understood. The objective of this paper is to develop a computational model to understand the change of mechanical microenvironment of fracture site under LCP with dynamic locking screw in comparison to standard locking screw, and how this change could potentially regulate tissue development within the fracture callus during the healing process.Keywords: bone healing, locking compression plate, dynamic locking screw, finite element modelling

Publisher

Trans Tech Publications, Ltd.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3