Affiliation:
1. Southwest University of Science and Technology
Abstract
In order to evaluate the performance of the self-propagating high-temperature synthesis (SHS) to treat 90SrO-contained radioactive graphite in N2 atmosphere, waste forms were prepared with the self-developed SHS reactor according to the waste forms formulation designed with a solid-soluted content of 010 wt% (calibrated in mass, hereinafter the same). The waste forms were made with the exothermic reaction (3C + 4Al + 3TiO2 = 2Al2O3 + 3TiC + Q), where, 88SrO (a stable Sr isotope)-containing 88SrO was used to simulate 90SrO. And the raw materials for the waste forms were the powdery materials of graphite (C), aluminum (Al) and titanium dioxide (TiO2). Then, X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used to test and analyze the phase composition and morphology of the prepared waste forms. According to the results in dealing with the treatment with the given exothermic reaction of the 90SrOcontaining radioactive graphite in N2 atmosphere, the SrO solid solubility could be up to 8 wt%. Besides, with a SrO content of 0~2 wt%, the major composition of the waste forms was including: alumina (Al2O3) in diamond scheme, titanium carbide (TiC) in cubic phase, graphite (C), anatase titanium dioxide (TiO2) and aluminum nitride (AlN) in cubic phase. Comparatively, with a SrO content of 3~8 wt%%, the major composition of the waste forms was including: alumina (Al2O3) in diamond scheme, titanium carbide (TiC) in cubic phase, graphite (C), anatase titanium dioxide (TiO2), aluminum nitride (AlN) in cubic phase and rhomboid aluminum titanate (Al2TiO5). Furthermore, diffractive peaks of unidentified phase occurred at 2θ = 7.7°, 15.6°, 19.8° and 24.1° position, whose intensities were increased with the increasing additional SrO content. The grain sizes of the prepared waste forms are mainly within 515μm, majorly exist in pieces.
Publisher
Trans Tech Publications, Ltd.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献