Strain Rate Effects on Strain-Induced Martensitic Transformation and Electrical Resistivity of Deforming Stainless Steel

Author:

Date Hidefumi1

Affiliation:

1. Tohoku Gakuin University

Abstract

Austenitic stainless steel was compressed at a strain rates of 103 s-1 using a Hopkinson pressure bar apparatus at temperatures of 77 K and 293 K. The electrical resistivity was measured to determine the volume fraction of martensite of a deforming specimen. A compressive specimen of the dumbbell type was suitable for attaching the lead-in wires of four-point probes to the specimen. The volume fraction of martensite formed at a strain rate of 103 s-1 was lower than that formed at a low strain rate regardless of the temperature, and the effect of the strain rate on the electrical resistivity was slight. However, since the volume fraction of martensite is expressed as a linear function of the electrical resistivity ratio as well as in the results obtained by the tensile test, the electrical resistivity was available as an index for estimating the volume fraction of martensite induced by dynamic deformation. The duration of the input wave was approximately 150 μs, and the appearance of the peak value of transient resistivity was approximately 1ms after the arrival of the input wave at the specimen. These results showed that the structure change evaluated using electrical resistivity was not completed in the time required for the stress wave to pass through the specimen, although the electrical resistivity immediately after dynamic deformation closely approached that obtained by the static test.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3