An Intelligent Integrated Method for Quality Prediction in Lead-Zinc Sintering Process

Author:

Wang Chun Sheng1,Wu Min1,Lei Qi1

Affiliation:

1. Central South University

Abstract

Based on some features in lead-zinc sintering process (LZSP), such as large time delay and strong non-linearity, an intelligent integrated method for quality prediction based on back-propagation neural network (BPNN) and improved grey system (IGS) is presented. First, the compositions of agglomerate are predicted by BPNN and IGS models. Then, a recursive entropy algorithm for the weighting coefficients is devised from the viewpoint of the information theory and an intelligent integrated prediction model (IIPM) is established. The compositions of sinter agglomerate are predicted by integrating the two prediction models. Application results show that the IIPM has higher prediction precision than that of single model and the proposed intelligent integrated method settles the modeling problem of the quality in the LZSP.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3