Investigation of Nanoscale Structure of Self-Emulsifying Drug Delivery System Containing Poorly Water-Soluble Model Drug

Author:

Kumpugdee-Vollrath Mont1,Weerapol Yotsanan2,Schrader Karin3,Sriamornsak Pornsak2ORCID

Affiliation:

1. Beuth Hochschule für Technik Berlin - University of Applied Sciences

2. Silpakorn University

3. Federal Research Institute of Nutrition and Food

Abstract

This work has a focus on the self-emulsifying drug delivery system (SEDDS), which can be used in pharmaceutical field for increasing bioavailability of poorly water-soluble drugs. The model drug resveratrol was used because of its poor water-solubility and is of interest because of its wide range of pharmacological effects. It is beneficial to understand the mechanism of SEDDS formation in the human body, therefore, the determination of nanoscale structure was carried out. For this purpose, small angle X-ray scattering (SAXS), photon correlation spectroscopy (PCS), and transmission electron microscopy (TEM) techniques were applied. We have found that the size and size distribution of particles were in nanometers. The inner structure of SEDDS was ordered with the lamellar distances (d-spacing) of < 20 nm. It seems that the prepared SEDDS in water form large oil drops (200-400 nm) in water as well as small micelles with the droplet size of 10-20 nm.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3