Design Development of Acoustic Waves Based Sensitive Sensors for Escherichia coli O157:H7 Detection

Author:

Ten Seng Teik1,Hashim Uda2,Sudin Ahmad1,Liu Wei Wen2,Foo Kai Loong2,Salleh N.H.M.1,Hisham Hashim2,Nazwa T.2

Affiliation:

1. MARDI

2. Universiti Malaysia Perlis (UniMAP)

Abstract

Food contamination has become critical issue and is being worse due to the insensitive detection devices. One of the dangerous food contaminations is by Escherichia coli (E.coli) O157:H7, one of the harmful bacterial pathogens which is distributed in soil, marine and estuarine waters, the intestinal tract of animals, or water contaminated with fecal matter. A small amount of E.coli with the dose fewer than 100 organisms in food products or water is enough to cause serious gastrointestinal illness to human. Hence, the ultra-high sensitive, label free biosensors have been designed in this research for the low concentration E.coli detection. Surface acoustic waves (SAW) devices have been initially developed and used for the high-volume low-cost TV component. Due to the ultra-sensitivity to the surface perturbation, SAW based devices have been modified to be sensors. Initially, SAW sensors were developed for gas detections and have been moving towards biological detections recently. Shear horizontal surface acoustic wave (SHSAW), one of the SAW based types is most suitable for the liquid based application as it has the advantage of acoustic energy is not being radiated into liquid. However, the main SHSAW design components are the operating frequency and wave length. These are strictly depended on the inter digital transducers (IDTs) design. Therefore, this paper is presenting the IDTs design concept and pattern development by using computer aid design (CAD) software.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biosensor Platforms for Rapid Detection of E. coli Bacteria;Escherichia coli - Recent Advances on Physiology, Pathogenesis and Biotechnological Applications;2017-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3