Electrochemical Enhancement on Utilizing Zero-Valent Iron to Degrade Trichloroethylene

Author:

Chen Jian Long1,Liu Yi Sung2,Wu Chih Chao1,Chu Jenn Chun3,Chung Chih Feng3,Wu Yi Ling3,Lin Hung Jie1

Affiliation:

1. Feng Chia University

2. Kuen-Ting Entech Co

3. Central Taiwan Science Park

Abstract

The objective of this research is to enhance the degrading ability of zero-valent iron (ZVI) on trichloroethylene (TCE) by using electrochemical technique. ZVI has been shown to effectively degrade TCE by reductive dechlorination, a process in which the ZVI, acting as a reducing agent, causes the chlorine to separate from TCE sequentially. The efficiency of this technique could be enhanced by lowering the redox potential of ZVI using electrochemical methods. In this research the lowering of redox potential was achieved by filling granular ZVI into a cathode compartment in a reactor. The ZVI was mixed with granular graphite to increase the overall electrical conductivity before being filled into the cathode. The anode and cathode compartments were separated with a Nafion membrane. The loss of TCE due to adsorption by the granular graphite during the experiments was evaluated by conducting batch adsorption tests. The electrochemical experiments were conducted by applying a direct current using a potentiostat. The TCE concentration as well as possible degradation products was analyzed with gas chromatography equipped with a mass detector. Chloride concentration was measured with ion chromatography. The results of adsorption tests of TCE by granular graphite fits a linear isotherm with a Kdvalue of 2.3 L/kg, which is comparable to values reported in the literature. Results from the TCE degradation experiments leads to two major conclusions: (1) degradation of TCE was facilitated by the applied current even when the cathode was filled with only granular graphite and (2) degradation rate of TCE by ZVI was increased by the applied current. The degradation rate of TCE could be fitted with a pseudo-first-order kinetics; the reaction rate constant, kh, increases from 0.017 at no current to 0.064 h-1at a current of 100 mA. No degradation product was observed in the liquid phase. In the gaseous phase, however, cis-1,2-dichloroethylene was observed. The applied current also caused the increasing rate of pH to decrease. The pH of the solution after 8h of processing time increased from 5.7 to 8.6 at no current, whereas it increased from 5.7 to 5.9 with the same processing time. This suggests the applied current caused the decrease of the corrosion rate of ZVI. The results of this study show the electrochemical technique not only increased the TCE degradation rate by ZVI but also decreased the consumption of ZVI by corrosion. Thus, the technique can be applied to prolong the life of ZVI installed in the field for TCE degradation.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3