Abstract
Numerical simulation of turning is still one of the best solutions to understand and improve such a process. Since many years, researchers have tried to use several numerical approaches to go round the difficulties and to set up reliable models (Lagrangian, ALE,…). Currently no perfect complete solution is available and it is time to introduce dedicated models prone to simulate partially the phenomena in order to reach specific conditions linked with real industrial problematics. This paper will present a 3D local global method set up to predict surface residual stresses in finish turning. This approach uses two kinds of simulations. A first one that allows reaching thermo mechanical steady state around the cutting edge and the chip area. A second one which sequences the application of the extracted thermo mechanical fields onto the real workpiece surface. The obtained results concerning the residual stresses fields will then be compared with the ones recorded experimentally.
Publisher
Trans Tech Publications, Ltd.