Thermo-Kinetic Simulation of the Yield Strength Evolution of AA7075 during Natural Aging

Author:

Lang Peter1,Weisz Thomas2,Ahmadi Mohammad Reza2,Povoden-Karadeniz Erwin2,Falahati Ahmad2,Kozeschnik Ernst2

Affiliation:

1. Materials Center Leoben Forschung GmbH

2. Vienna University of Technology

Abstract

The yield strength evolution in aluminum alloy 7075 is investigated during natural aging. The thermo-kinetic simulation, capable of predicting nucleation, growth, coarsening and dissolution of metastable and stable hardening precipitates in Al-Zn-Mg-Cu during natural aging, is outlined briefly. A recent strengthening model for shearing and bypassing of precipitates by dislocations is utilized to calculate the evolution of the macroscopic yield strength at room temperature. The simulation accounts for vacancy-solute binding energies calculated with the help of first principles simulations that influence the diffusivity of the system due to the presence of excess quenched-in vacancies. These results provide predictions about the amount of excess vacancies trapped by solid solution alloying elements and how the lifetime of vacancies changes due to attractive or repelling binding forces between vacancies and different solid atoms in the aluminum matrix. In our approach, we calculate the strength evolution after quenching due to interaction between dislocations and changes in the microstructure by precipitation of different kinds of secondary phases. The predicted evolution of yield strength is finally verified on experimental measurements.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3