Shale Reservoirs Multi-Fracture Fracturing Technique and Studies on Reservoirs Stresses

Author:

Zhang Guang Ming1,Liu Jian Dong1,Xiong Chun Ming1,Shen Lu He1,Jin Juan1

Affiliation:

1. PetroChina

Abstract

Theoretical studies have shown that the generation of the hydraulic fractures reduces or even reverses the stress anisotropy near the fractures and results in increasing the complexity of fractures. A finite element model was established in which the pore pressure elements were used to simulate the behavior of porous media and the pore pressure cohesive elements were adopted to catch the characters of hydraulic fractures. A special fracturing manner was adopted to create complicated fracture networks by reducing or even reversing the stress anisotropy between fractures. The geometries of hydraulic fractures, strains, stresses, pore pressure distributions and fluid pressures within the fractures are obtained. The results of the model are fit well with the corresponding theoretical data. The simulation results show that the stress anisotropy is reduced by the generation of the hydraulic fractures, multiple parallel transverse fractures of horizontal well even reverse the stress anisotropy in some place of the reservoir. The simulation results validate the feasibility of the theoretical studies and the expected complex network fractures could be created by adopting special fracturing manner.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3