Development of a Self-Propelled Multi-Jet Polishing Tool for Ultra Precision Polishing

Author:

Tsegaw Assefa Asmare1,Shiou Fang Jung1

Affiliation:

1. National Taiwan University of Science and Technology

Abstract

As the needs of optical glasses are on the rise, the precision on shape, form, surface qualities and the scaling down of sizes are rising, too. The standards and surface finish of reference mirrors used in measuring appliances are crucial; hence, enhancement of the surface finish is indispensable in manufacturing industries. This paper proposes a self-propelled multi jet polishing technique for ultra precision polishing process in which bladelessTesla turbinewas used as a prime mover. The turbine is characterized by high swirling velocity at the outlet; therefore, high kinetic energy in the course of away from the turbine was used as polishing energy. Simulation of the flow of the field of turbine blades using computational fluid dynamics software (CFD) has also been presented. With a newly designed and manufactured polishing tool, this paper investigates the optimal polishing parameters for surface roughness improvement of crown optical glasses using Taguchis experimental approach; signal-to-nose (S/N) ratio and ANOVA analysis was also carried out to determine the effect of main factors on the surface roughness. Consequently, a 2.5μm size of Al2O3abrasive, 10wt% abrasive concentration, 80rpm of polishing head, 6 numbers of nozzles, 6 kg/cm2of pressure, and 45min. of polishing time have been found to be the optimal parameters. It was observed that about 94.44% improvements on surface roughness; Ra, from 0.360μm to 0.020μm has been achieved using the optimal parameters. In addition to this; angular speed of polishing head, pressure and polishing time were found to have significant effect on surface roughness improvement.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3