Bp Neural Network Optimized by PSO and its Application in Function Approximation

Author:

Li Jun Yi1

Affiliation:

1. Dongguan Polytechnic

Abstract

BP network is one of the most popular artificial neural networks because of its special advantage such as simple structure, distributed storage, parallel processing, high fault-tolerance performance, etc. However, with its extensive use in recent years, it is discovered that BP algorithm has the defects on slow convergent speed and easy convergence to a local minimum point. The paper proposes a method of BP Neural Network improved by Particle Swarm Optimization (PSO). The hybrid algorithm can not only avoid local minimum, but also raise the speed of network training and reduce the convergence time.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference9 articles.

1. Kannan S, Subbaraj P, et al. Application of particle swarm optimization technique and its variants to generation expansion planning problem[J]. Electric Power Systems Research, 2005, 70(3): 203-210.

2. Zeng Wanli, Wei Renyong, Chen Hongling. Research and Application of BP neural network based on Improved PSO algorithm[J]. Computer Technology and Development, 2008(4): 49-51.

3. Gao Shang, Yang Jingyu. Swarm intelligence algorithms and applications[M]. Beijing: China WaterPower Press, 2006: 6-10.

4. Liang Jun. Research on particle swarm optimization applied in optimization problems[J]. Master degree theses of Guangxi normal university, (2008).

5. Du Lei, Jia Zhenhong, Xue Liang. Human Face Recogniton Based on Principal Component Analysis and Particle Swarm Optimization BP Neural Network[C]. Third International Conference on Natural Computation, 2007, IEEEE.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Study of the Seabed Side-Scan Acoustic Images Recognition Using BP Neural Network;Communications in Computer and Information Science;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3