Affiliation:
1. Lanzhou University of Technology
Abstract
A novel fast algorithm for lndependent Component Analysis is introduced, which can be used for blind source separation and machine fault diagnosis feature extraction. It is shown how a neural network learning rule can be transformed into a fixed-point iteration, which provides an algorithm that is very simple, does not depend on any user-defined parameters, and is fast to converge to the most accurate solution allowed by the data. The purpose of this paper is to review the application of blind source separation in the machine fault diagnosis,including the following aspects: noise elimination and extraction of the weak signals,the separation of multi-fault sources,redundancy reduction,feature extraction and pattern classification based on independent component analysis. And its application in machine fault diagnosis is illustrated by the examples. In addition, some prospects about using blind source separation for machine fault diagnosis are discussed.
Publisher
Trans Tech Publications, Ltd.