Design and Test of a Rapid Thermal Annealing Furnace for Improving Surface Properties of Silicon Brick in Multi-Wire Sawing Process

Author:

Chen Chao Chang Arthur1,Cheng Shou Chih2,Chan Ming Hsien1,Hsu Wen Ching2,Cheng Shih Lung2

Affiliation:

1. National Taiwan University of Science and Technology

2. Sino-American Silicon Products Inc

Abstract

Multi-wire sawing process with free abrasive slurry or called multi-wire slurry wire sawing (MW-SWS) process has been popularly adopted in slicing of silicon substrates for solar cell application. However, the chipping or edge cracking of thin thickness as 200 μm of such silicon substrates need to be improved in current mass production. The potential subsurface cracks induced by previous edge grinding or brush polishing of silicon brick may be the main cause. This paper is to develop a rapid thermal annealing (RTA) process for thermal annealing of the surface quality of silicon brick before MR-SWS. In this study, a RTA furnace is designed and used to improve the material property of surface of silicon brick. A quartz crucible is used as heating source with the maximum heated specimen size of 156×156×100 mm (W×H×L). The bulk silicon brick used in this study is selected with a size of 20×10×20 mm (W×H×L) and supplied by the Sino-American Silicon Ltd. (SAS) in Hsinchu, Taiwan. The nitrogen gas is also injected as a protective gas for target heating temperature around 550°C with rapid heating rate of 50°C per second. The micro-Vickers (Akashi MVK-H1) and SEM (JSM-6500F, JOEL) instruments have been used to observe the improvement of rectified material properties of bulk silicon substrate. Experiments of silicon wafers have been first performed for obtaining the recipe of RTA testing and then adjusting for silicon brick testing. Results have been verified by the lower surface hardness and larger crystal grain size after RTA treatment. Furthermore, such treated silicon brick can be further adopted for MW-SWS process to identify the effects of reducing chipping or edge cracking of silicon substrates for solar cell application.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3