The Correlation between Stacking Fault Energy and the Work Hardening Behaviour of High-Mn Twinning Induced Plasticity Steel Tested at Various Temperatures

Author:

Shterner Vadim1,Timokhina Ilana B.1,Beladi Hossein1

Affiliation:

1. Deakin University

Abstract

High-Mn Twinning Induced Plasticity (TWIP) steels have superior mechanical properties, which make them promising materials in automotive industry to improve the passenger safety and the fuel consumption. The TWIP steels are characterized by high work hardening rates due to continuous mechanical twin formation during the deformation. Mechanical twinning is a unique deformation mode, which is highly governed by the stacking fault energy (SFE). The composition of steel alloy was Fe-18Mn-0.6C-1Al (wt.%) with SFE of about 25-30 mJ/m2 at room temperature. The SFE ensures the mechanical twinning to be the main deformation mechanism at room temperature. The microstructure, mechanical properties, work hardening behaviour and SFE of the steel was studied at the temperature range of ambient≤T[°C]≤400°C. The mechanical properties were determined using Instron tensile testing machine with 30kN load cell and strain rate of 10-3s-1 and the work hardening behaviour curves were generated using true stress and true strain data. The microstructure after deformation at different temperatures was examined using Zeiss Supra 55VP SEM. It was found that an increase in the deformation temperature raised the SFE resulting in the deterioration of the mechanical twinning that led to decrease not only in the strength but also in the total strain of the steel. A correlation between the temperature, the SFE, the mechanical twinning, the mechanical properties and the work hardening rate was also found.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3