Numerical Simulation of One Pulse Power Laser Shock Peening

Author:

Chen Lei1

Affiliation:

1. Hangzhou Dianzi University

Abstract

Laser shock peening (LSP) is a novel technology of surface treatment. LSP utilizes a short laser pulse with high energy density, which induced a high pressure stress wave propagation and residual compressive stress on material surface. The effects of LSP of SAE9310 steel with a laser pulse of 14.2J at 2.9mm square beam have been studied by finite element method. The underlying formulation is based on Lagangian elastoplastic materials model. The propagation of shock wave, residual stress and plastic strain are simulated. The simulations show that the residual stress is mainly in the radial direction of the workpiece, and nearly zero in the longitudinal direction. The plastic strain remains on the processed surface dominantly. Divergences between theoretical and experimental residual stress occur due to the simplification of shock peening conditions.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3