Power System Fault Diagnosis Based on Artificial Fish-Swarm Algorithm

Author:

Qu Tian Yi1

Affiliation:

1. Xuzhou Institute of Technology

Abstract

The primary method of power system fault diagnosis is that the fault section estimation is demonstrated a 0-1 programming model according to the acting theory of protective relays. This paper proposed a kind improved artificial fish-swarm algorithm: binary artificial fish-swarm algorithm (BAFA) for this kind of problem. Forward speed of optimal direction between swarm-behavior and follow-behavior is analyzed and a comparative analysis is made with genetic algorithm (GA) on this basis. Results indicate that follow-behavior is superior to swarm-behavior on forward speed of optimal direction and BAFA is superior to GA on the comprehensive performance. Meanwhile, it is shown that BAFA has the fast convergence speed and better optimization ability.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference6 articles.

1. T. Sakquchi et al. Prospects of expert systems in power system operation[J]. Electrical Power & Energy Systems,1988,10(2).

2. Cho H J,Park J K. An expert system for fault section diagnosis of power systems using fuzzy relations[J]. IEEE Trans on Power Systems, 1977, 12(1): 342-348.

3. Li Ran,Li Jinghua,Su Lijun. Application of rough set to build electric power grid fault diagnosis model based on decision tree[J]. Relay, 2005, 33(18): 1-5.

4. Wang Jialin,Xia Li,Wu Zhengguo,Yang Xuanfang. State of arts of fault diagnosis of power system[J]. Power System Protection and Control, 2010, 38(18): 210~214.

5. Zang Tianlei,He Zhengyou,Li Chaowen,Qian Qingquan. Fault section estimation in transmission network based on binary swarm intelligence algorithm[J]. Power System Protection and Control, 2010, 38(14): 16~22.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3