Abstract
This article presents a statistical correlation between GPS precipitable water vapor and meteorological data, i.e., surface temperature, air pressure, relative humidity, dew point temperature, and water vapor pressure by using linear regression. The data, recorded over a 4-year period, was used as an estimation of missing GPS precipitable water vapor data from discontinuous recordings. A multiple linear regression equation showed a correlation among zenith wet delay (ZWD), water vapor pressure (e) and surface temperature (T) was ZWD(e,T) = 17.4952e-0.8281T-93.164, with a coefficient of determination (R2) of 0.725, a mean absolute error of 8.71 mm, a root mean square error of 10.39 mm, and a mean absolute percentage error of 18.63%. The equation obtained can be used to estimate GPS precipitable water vapor data which is missing from recordings due to accident or technological error.
Publisher
Trans Tech Publications, Ltd.
Reference10 articles.
1. J.P. Ortiz de Galisteo., C. Toledano., V. Cachorro., & B. Torres. (2010). Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations. GPS Solut, (14), 389-395.
2. M. Boccolari.,S. Fazlagic., P. Frontero., L. Lombroso., S. Pugnaghi., R. Santangelo., S. Corradini. & S. Teggi. (2002).
3. M. Bevis., S. Businger., T.A. Herring., C. Rocken., R.A. Anters., & R.H. Ware. (1992). GPS Meteorology' Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. JOURNAL OF GEOPHYSICAL RESEARCH, (97), 15787-15801.
4. S. Businger., S.R. Chiswell., M. Bevis., J. Duan., R.A. Anthes., C. Rocken., R.H. Ware., M. Exner., T. Vanhover., & F.S. Solhein. (1996). The promise of GPS in atmospheric monitoring. Bull. Am. Meteorol, (77), 5-18.
5. Chao-Lin Zhang a, Ying-Hwa Kuo b, Lian-Jun Dai c, Yan-Li Chu a, John Braunb, Jing-jiang Zhanga Qing-Chun Li a Min Chen. (2008).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative Analysis of PWV Using Gamit and Pride PPP-AR;2023 IEEE India Geoscience and Remote Sensing Symposium (InGARSS);2023-12-10