Analysis and Stress Optimization Design of an S-Shaped Micro Spring

Author:

Li Li Shun1,Meng Xiang De,Li Hong Xun2

Affiliation:

1. Tianjin University

2. Academy of Military Transportation

Abstract

The stress distribution of an S-shaped micro spring fabricated by the micro-electro-mechanical-system (MEMS) technology was analyzed by the finite-element method (FEM) using ANSYS software, which showed that the stress concentration is located in the inner corner of the turning round. To reduce the maximum stress but not change the spring coefficient, an optimization S-shaped micro spring with the slope cross section was designed. The width of one end of the turning round is increased from the original 80μm to 100μm, while the other is decreased from 80μm to 21.5μm. The spring coefficient formula of the optimization S-shaped micro spring was calculated out by the Castigliano second law, and the difference between the formula and the FEM is 2.7%. At the same time the FEM simulation shows that the maximum stress of the optimization S-shaped micro spring can be reduced by 32.7% while the spring coefficient is the same comparing with the primary S-shaped micro spring, which shows that the mechanical performance of the optimization S-shaped micro spring is better than that of the primary S-shaped micro spring.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3