The RBF Neural Network Based on Kalman Filter Algorithm and Dual Radial Transfer Function

Author:

Song Shao Yun1,Zhang Bao Hua1,Ma Yu1

Affiliation:

1. Yuxi Normal University

Abstract

RBF neural network have advantages of training simple, fast efficiency of learning, easy to fall into local minima, etc..It is widely used to solve the problem in signal processing and pattern recognition. Although the common RBF network is relatively easy to build, but because of the structure is usually fixed or high complexity, resulting in learning time is too long or network resource waste. For these reasons, proposed using extended Kalman filter as the RBF learning algorithm, and using double radial function in the hidden layer. By approaching the basis of the results of the analysis clearly shows that the network model than the other categories have a stronger generalization.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference7 articles.

1. R. Adamczak, W. Duch, and N. Jankowski. New developments in the Feature Space Mapping model. In Third Conference on Neural Networks and Their Applications, pages 65–70, Kule, Poland, Oct. (1997).

2. C. M. Bishop. Improving the generalization properties of radial basis function neural networks. Neural Computation, 3(4): 579–588, (1991).

3. J. V. Candy. Signal processing: The model based approach. McGraw-Hill, New York, (1986).

4. W. Duch and N. Jankowski. Survey of neural transfer functions. Neural Computing Surveys, 7, 1999. (submitted).

5. F. Girosi. An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6), Aug. (1998).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3