Structural Damage Detection by Fusion of GA and PSO

Author:

Yu Ling1ORCID,Fu Yong Ming1

Affiliation:

1. China Three Gorges University

Abstract

In order to solve the inverse problem on structural damage detection (SDD) in the field of structural health monitoring (SHM), a FGAPSO algorithm is proposed by a fusion of the genetic algorithm (GA) and the particle swarm optimization (PSO) in this study. For improving the simple GA with drawbacks of easy precocious and of lower computation efficiency, the real-coded GA is implemented, the chaotic logistic mapping is chosen for initializing population, the self-adaptive crossover-mutation operators and elitist strategy are employed. The GA is then mixed with the PSO algorithm for the population diversity and convergence by exchanging genes between two new populations internally and the goal of improving GA is attained at last. Further, some numerical simulations on a 13-bar planar truss structure with several damage cases have been carried out for assessing the performance of the FGAPAO. The illustrated results show that the proposed FGAPSO algorithm is better than any of conventional GA and PSO. Even for the slight damage case, it is still more feasible and effective for SDD.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3