Residual Stress Evaluation of Short-Fiber Reinforced Plastics by X-Ray Diffraction

Author:

Tanaka Keisuke1,Koike Yuuki1,Akiniwa Yoshiaki2

Affiliation:

1. Meijo University

2. Yokohama National University

Abstract

The X-ray diffraction method is used to evaluate the residual stress in injection-molded plates of short-fiber reinforced plastics (SFRP) made of crystalline thermoplastics, polyphenylene sulphide (PPS), reinforced by carbon fibers with 30 mass%. The stress in the matrix in the skin layer was determined using Cr-Kα radiation with the sin2 ψ method. The X-ray evaluation of stress in carbon fibers was not possible because of high texture. A new method was proposed to evaluate the macrostress in SFRP from the measurement of the matrix stress. According to micromechanics analysis of SFRP, the matrix stresses in the fiber direction and perpendicular to the fiber direction, and shear stress can be expressed as linear functions of the applied (macro-) stresses in the fiber direction and perpendicular to the fiber direction, and shear stress. The proportional constants are named stress-partitioning coefficients. Using skin-layer strips cut parallel, perpendicular and 45° to the molding direction, the stress in the matrix was evaluated under the uniaxial applied stress and the stress-partitioning coefficients of the above equations were determined. Once the relations between the macrostress and matrix stress are established, the macrostress in SFRP can be evaluated from the measurements of the matrix stresses using X-rays.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3