On the Behavior of Yttria/Yttrium during Mechanical Alloying of a Fe - Y2O3 Model Alloy System

Author:

Ressel Gerald1,Parz Peter2,Fian Alexander3,Holec David1,Primig Sophie1,Puff Werner2,Leitner Harald1,Clemens Helmut1

Affiliation:

1. Montanuniversität Leoben

2. Graz University of Technology

3. Joanneum Research Forschungsgesellschaft

Abstract

Mechanical alloying (MA) is an established way to prepare nanocrystalline materials and metastable solutions of materials, which normally have no mutual solubility. This is also the case for oxide dispersion strengthened (ODS) steels with improved mechanical properties at elevated temperatures. It is known that a small addition of yttria (Y2O3) has a beneficial effect on high temperature strength and reduces the creep rate in mechanically alloyed ferritic steels by about six orders of magnitude. In this work we present an experimental study using atom probe tomography, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy combined with first principles modeling focusing on the distribution and behavior of yttria in pure iron prepared by mechanical alloying. Atom probe tomography and X-ray photoelectron spectroscopy measurements as well as positron annihilation spectroscopy conducted on powder particles directly after milling have revealed that a predominantly fraction of the yttria powder dissolves in the iron matrix and Y atoms occupy convenient positions, such as vacancies or dislocations. This is supported by ab initio calculations demonstrating that the formation energy for Y substitutional defects in bcc-Fe is significantly lower in the close neighborhood of vacancies.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3