Improved Optical Model for SiO2/Si Ultra-Thin Film Thickness Determination by Spectroscopic Ellipsometry

Author:

Fan Jiang Wei1,Sun Qin Lei1,Liu Mei Quan1

Affiliation:

1. Shijiazhuang Mechanical Engineering College

Abstract

Different optical models were adopted to fit theoretical simulation curves of a SiO2 ultra-thin film with a density of 2.2 g/cm3 and a thickness of 6nm grown on Si wafer. The results indicate that thickness obtained from fitting decrease linearly with increase of film density. An improved optical model (density of thin film of 2.4g/cm3, roughness of surface of 0.4nm, roughness of surface of 0.3nm) was obtained according to the above analysis and the GIXRR results of our previous work. The improved model could give more accurate thickness value of ultrathin film with thickness less than 10nm. It was employed in the thickness fitting for thermal oxidized SiO2/Si thin film with nominal thicknesses of 2, 4, 6, 8 and 10nm. The results were 2.61, 4.07, 6.02, 7.41 and 9.43nm, decreased by 13.8%10.3%8.1%7.3% and 6.6%, respectively, compared with the results calculated from the traditional model.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3