The Analysis of Photocurrent Multiplication in Organic Dye CuPc Transistor with Wide Wavelength Light

Author:

Wang Yue Yue1,Wang Dong Xing1,Zhang Yong Shuang1,Wang Ze Ying1

Affiliation:

1. Harbin University of Science and Technology

Abstract

The organic photoelectric transistors using the vacuum evaporation and sputtering process are prepared in this paper. The Cu/CuPc/Al/CuPc/ITO layer based on vertical structure is grown through a CuPc active layer. The CuPc has excellent photosensitivity and it is easy to be fabricated into Short-Channel device with vertical structure. It is shown that I-V characteristics of organic photoelectric transistors are unsaturated. In this experiment the light source is the Bromine-tungsten lamp in the range of 300nm to 800nm. When the light source irradiates the device with Vec=2V, the operating current is 0.155μA which has been increased to 2.3-3.6 times as compared with the dark state. Therefore, the amplification coefficient of output current Iecis increasing in irradiation with smaller base voltage. As a result, the current amplification coefficient β is 5.25 and 2.14 with illumination and without illumination respectively.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3